Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and dynamic characterization of an unfolded state of poplar apo-plastocyanin formed under nondenaturing conditions.

Identifieur interne : 004654 ( Main/Exploration ); précédent : 004653; suivant : 004655

Structural and dynamic characterization of an unfolded state of poplar apo-plastocyanin formed under nondenaturing conditions.

Auteurs : Y. Bai [États-Unis] ; J. Chung ; H J Dyson ; P E Wright

Source :

RBID : pubmed:11316886

Descripteurs français

English descriptors

Abstract

Plastocyanin is a predominantly beta-sheet protein containing a type I copper center. The conformational ensemble of a denatured state of apo-plastocyanin formed in solution under conditions of low salt and neutral pH has been investigated by multidimensional heteronuclear NMR spectroscopy. Chemical shift assignments were obtained by using three-dimensional triple-resonance NMR experiments to trace through-bond heteronuclear connectivities along the backbone and side chains. The (3)J(HN,Halpha) coupling constants, (15)N-edited proton-proton nuclear Overhauser effects (NOEs), and (15)N relaxation parameters were also measured for the purpose of structural and dynamic characterization. Most of the residues corresponding to beta-strands in the folded protein exhibit small upfield shifts of the (13)C(alpha) and (13)CO resonances relative to random coil values, suggesting a slight preference for backbone dihedral angles in the beta region of (phi,psi) space. This is further supported by the presence of strong sequential d(alphaN)(i, i + 1) NOEs throughout the sequence. The few d(NN)(i, i + 1) proton NOEs that are observed are mostly in regions that form loops in the native plastocyanin structure. No medium or long-range NOEs were observed. A short sequence, between residues 59 and 63, was found to populate a nonnative helical conformation in the unfolded state, as indicated by the shift of the (13)C(alpha), (13)CO, and (1)H(alpha) resonances relative to random coil values and by the decreased values of the (3)J(HN,Halpha) coupling constants. The (15)N relaxation parameters indicate restriction of motions on a nanosecond timescale in this region. Intriguingly, this helical conformation is present in a sequence that is close to but not in the same location as the single short helix in the native folded protein. The results are consistent with earlier NMR studies of peptide fragments of plastocyanin and confirm that the regions of the sequence that form beta-strands in the native protein spontaneously populate the beta-region of (phi,psi) space under folding conditions, even in the absence of stabilizing tertiary interactions. We conclude that the state of apo-plastocyanin present under nondenaturing conditions is a noncompact unfolded state with some evidence of nativelike and nonnative local structuring that may be initiation sites for folding of the protein.

DOI: 10.1110/ps.00601
PubMed: 11316886
PubMed Central: PMC2374208


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural and dynamic characterization of an unfolded state of poplar apo-plastocyanin formed under nondenaturing conditions.</title>
<author>
<name sortKey="Bai, Y" sort="Bai, Y" uniqKey="Bai Y" first="Y" last="Bai">Y. Bai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037</wicri:regionArea>
<wicri:noRegion>California 92037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chung, J" sort="Chung, J" uniqKey="Chung J" first="J" last="Chung">J. Chung</name>
</author>
<author>
<name sortKey="Dyson, H J" sort="Dyson, H J" uniqKey="Dyson H" first="H J" last="Dyson">H J Dyson</name>
</author>
<author>
<name sortKey="Wright, P E" sort="Wright, P E" uniqKey="Wright P" first="P E" last="Wright">P E Wright</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11316886</idno>
<idno type="pmid">11316886</idno>
<idno type="pmc">PMC2374208</idno>
<idno type="doi">10.1110/ps.00601</idno>
<idno type="wicri:Area/Main/Corpus">004783</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004783</idno>
<idno type="wicri:Area/Main/Curation">004783</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004783</idno>
<idno type="wicri:Area/Main/Exploration">004783</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural and dynamic characterization of an unfolded state of poplar apo-plastocyanin formed under nondenaturing conditions.</title>
<author>
<name sortKey="Bai, Y" sort="Bai, Y" uniqKey="Bai Y" first="Y" last="Bai">Y. Bai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037</wicri:regionArea>
<wicri:noRegion>California 92037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chung, J" sort="Chung, J" uniqKey="Chung J" first="J" last="Chung">J. Chung</name>
</author>
<author>
<name sortKey="Dyson, H J" sort="Dyson, H J" uniqKey="Dyson H" first="H J" last="Dyson">H J Dyson</name>
</author>
<author>
<name sortKey="Wright, P E" sort="Wright, P E" uniqKey="Wright P" first="P E" last="Wright">P E Wright</name>
</author>
</analytic>
<series>
<title level="j">Protein science : a publication of the Protein Society</title>
<idno type="ISSN">0961-8368</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Apoproteins (chemistry)</term>
<term>Apoproteins (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Nuclear Magnetic Resonance, Biomolecular (MeSH)</term>
<term>Plastocyanin (chemistry)</term>
<term>Plastocyanin (metabolism)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Denaturation (MeSH)</term>
<term>Protein Folding (MeSH)</term>
<term>Structure-Activity Relationship (MeSH)</term>
<term>Thermodynamics (MeSH)</term>
<term>Trees (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Apoprotéines (composition chimique)</term>
<term>Apoprotéines (métabolisme)</term>
<term>Arbres (composition chimique)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Dénaturation des protéines (MeSH)</term>
<term>Plastocyanine (composition chimique)</term>
<term>Plastocyanine (métabolisme)</term>
<term>Pliage des protéines (MeSH)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Résonance magnétique nucléaire biomoléculaire (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thermodynamique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Apoproteins</term>
<term>Plastocyanin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Apoproteins</term>
<term>Plastocyanin</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Apoprotéines</term>
<term>Arbres</term>
<term>Plastocyanine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Apoprotéines</term>
<term>Plastocyanine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Molecular Sequence Data</term>
<term>Nuclear Magnetic Resonance, Biomolecular</term>
<term>Protein Conformation</term>
<term>Protein Denaturation</term>
<term>Protein Folding</term>
<term>Structure-Activity Relationship</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Dénaturation des protéines</term>
<term>Pliage des protéines</term>
<term>Relation structure-activité</term>
<term>Résonance magnétique nucléaire biomoléculaire</term>
<term>Séquence d'acides aminés</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plastocyanin is a predominantly beta-sheet protein containing a type I copper center. The conformational ensemble of a denatured state of apo-plastocyanin formed in solution under conditions of low salt and neutral pH has been investigated by multidimensional heteronuclear NMR spectroscopy. Chemical shift assignments were obtained by using three-dimensional triple-resonance NMR experiments to trace through-bond heteronuclear connectivities along the backbone and side chains. The (3)J(HN,Halpha) coupling constants, (15)N-edited proton-proton nuclear Overhauser effects (NOEs), and (15)N relaxation parameters were also measured for the purpose of structural and dynamic characterization. Most of the residues corresponding to beta-strands in the folded protein exhibit small upfield shifts of the (13)C(alpha) and (13)CO resonances relative to random coil values, suggesting a slight preference for backbone dihedral angles in the beta region of (phi,psi) space. This is further supported by the presence of strong sequential d(alphaN)(i, i + 1) NOEs throughout the sequence. The few d(NN)(i, i + 1) proton NOEs that are observed are mostly in regions that form loops in the native plastocyanin structure. No medium or long-range NOEs were observed. A short sequence, between residues 59 and 63, was found to populate a nonnative helical conformation in the unfolded state, as indicated by the shift of the (13)C(alpha), (13)CO, and (1)H(alpha) resonances relative to random coil values and by the decreased values of the (3)J(HN,Halpha) coupling constants. The (15)N relaxation parameters indicate restriction of motions on a nanosecond timescale in this region. Intriguingly, this helical conformation is present in a sequence that is close to but not in the same location as the single short helix in the native folded protein. The results are consistent with earlier NMR studies of peptide fragments of plastocyanin and confirm that the regions of the sequence that form beta-strands in the native protein spontaneously populate the beta-region of (phi,psi) space under folding conditions, even in the absence of stabilizing tertiary interactions. We conclude that the state of apo-plastocyanin present under nondenaturing conditions is a noncompact unfolded state with some evidence of nativelike and nonnative local structuring that may be initiation sites for folding of the protein.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11316886</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>06</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0961-8368</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2001</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Protein science : a publication of the Protein Society</Title>
<ISOAbbreviation>Protein Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural and dynamic characterization of an unfolded state of poplar apo-plastocyanin formed under nondenaturing conditions.</ArticleTitle>
<Pagination>
<MedlinePgn>1056-66</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Plastocyanin is a predominantly beta-sheet protein containing a type I copper center. The conformational ensemble of a denatured state of apo-plastocyanin formed in solution under conditions of low salt and neutral pH has been investigated by multidimensional heteronuclear NMR spectroscopy. Chemical shift assignments were obtained by using three-dimensional triple-resonance NMR experiments to trace through-bond heteronuclear connectivities along the backbone and side chains. The (3)J(HN,Halpha) coupling constants, (15)N-edited proton-proton nuclear Overhauser effects (NOEs), and (15)N relaxation parameters were also measured for the purpose of structural and dynamic characterization. Most of the residues corresponding to beta-strands in the folded protein exhibit small upfield shifts of the (13)C(alpha) and (13)CO resonances relative to random coil values, suggesting a slight preference for backbone dihedral angles in the beta region of (phi,psi) space. This is further supported by the presence of strong sequential d(alphaN)(i, i + 1) NOEs throughout the sequence. The few d(NN)(i, i + 1) proton NOEs that are observed are mostly in regions that form loops in the native plastocyanin structure. No medium or long-range NOEs were observed. A short sequence, between residues 59 and 63, was found to populate a nonnative helical conformation in the unfolded state, as indicated by the shift of the (13)C(alpha), (13)CO, and (1)H(alpha) resonances relative to random coil values and by the decreased values of the (3)J(HN,Halpha) coupling constants. The (15)N relaxation parameters indicate restriction of motions on a nanosecond timescale in this region. Intriguingly, this helical conformation is present in a sequence that is close to but not in the same location as the single short helix in the native folded protein. The results are consistent with earlier NMR studies of peptide fragments of plastocyanin and confirm that the regions of the sequence that form beta-strands in the native protein spontaneously populate the beta-region of (phi,psi) space under folding conditions, even in the absence of stabilizing tertiary interactions. We conclude that the state of apo-plastocyanin present under nondenaturing conditions is a noncompact unfolded state with some evidence of nativelike and nonnative local structuring that may be initiation sites for folding of the protein.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bai</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chung</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dyson</LastName>
<ForeName>H J</ForeName>
<Initials>HJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wright</LastName>
<ForeName>P E</ForeName>
<Initials>PE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>F32 GM018193</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM057374</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM18193</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM57374</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Protein Sci</MedlineTA>
<NlmUniqueID>9211750</NlmUniqueID>
<ISSNLinking>0961-8368</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001059">Apoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9014-09-9</RegistryNumber>
<NameOfSubstance UI="D010970">Plastocyanin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001059" MajorTopicYN="N">Apoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019906" MajorTopicYN="N">Nuclear Magnetic Resonance, Biomolecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010970" MajorTopicYN="N">Plastocyanin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011489" MajorTopicYN="N">Protein Denaturation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="Y">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11316886</ArticleId>
<ArticleId IdType="pmc">PMC2374208</ArticleId>
<ArticleId IdType="doi">10.1110/ps.00601</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1993 Feb 20;229(4):1125-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7680380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Sep;6(2):135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Jan;5(1):14-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7881270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Sep;6(2):153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Mar 21;39(11):2894-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10715109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1995 Dec;4(12):2605-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8580852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1998 Feb;5(2):148-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 1990 Aug 15-Sep;29(10-11):1423-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2375792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Nov 23;32(46):12299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8241116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Nov 28;274(2):152-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9398523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1991 Nov 18;293(1-2):72-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1959674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Dec 15;419(2-3):285-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9428652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Jun 29;32(25):6337-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8518279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Apr 5;257(3):669-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8648632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1983 Sep 15;169(2):521-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6620385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Jan 24;34(3):868-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7827045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Jul 25;28(15):6150-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2675964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Jan 26;255(3):494-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8568893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Feb 19;286(2):579-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9973572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1975 Mar 11;14(5):887-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1125175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Dec 14;38(50):16424-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1997 Mar;6(3):706-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9070453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1996 Jan;10(1):27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8566543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2000 Sep;18(1):43-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11061227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1993 Mar;3(2):225-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8477187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Aug 5;226(3):819-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1507228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1994;239:363-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7830591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Feb 8;33(5):1063-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8110737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Dec 26;34(51):16733-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8527448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Mar 10;259(5):2822-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6698995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Mar 4;36(9):2390-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9054544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Jan;5(1):67-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7881273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):20-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1729690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1988 Sep 20;27(19):7167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3061450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1998 Jul;5 Suppl:499-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9665178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pept Res. 1997 Feb;49(2):120-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9147309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1988 May 5;201(1):161-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2843644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 11;257(5076):1559-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1523410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Mar 27;40(12):3561-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 1997 Apr 15;41(5):495-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9095674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Sep 30;242(4):527-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7932708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2001 Apr 4;123(13):2970-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Aug 5;226(3):795-817</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1507227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Feb 18;236(2):637-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7508991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1985 Dec 5-11;318(6045):480-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4069219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phys Chem. 1996;47:369-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8930101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Sep;6(2):189-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22910800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 May 23;34(20):6784-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7756310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chung, J" sort="Chung, J" uniqKey="Chung J" first="J" last="Chung">J. Chung</name>
<name sortKey="Dyson, H J" sort="Dyson, H J" uniqKey="Dyson H" first="H J" last="Dyson">H J Dyson</name>
<name sortKey="Wright, P E" sort="Wright, P E" uniqKey="Wright P" first="P E" last="Wright">P E Wright</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Bai, Y" sort="Bai, Y" uniqKey="Bai Y" first="Y" last="Bai">Y. Bai</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004654 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004654 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11316886
   |texte=   Structural and dynamic characterization of an unfolded state of poplar apo-plastocyanin formed under nondenaturing conditions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11316886" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020